Современная классификация живого. Царства живых организмов

Клетка - естественная крупинка жизни, как атом - естественная крупинка неорганизованной материи.

Тейяр де Шарден

Рассмотрение явлений живой природы по уровням биологических структур даст возможность изучения возникновения и эволюции живы систем на Земле - от простейших и менее организованных систем к боле сложным и высокоорганизованным. Первые классификации растений, наиболее известной из которых была система Карла Линнея, а также классификация животных Жоржа Бюффона носили в значительной мере искусственный характер, поскольку не учитывали происхождения и развити живых организмов. Тем не менее они способствовали объединению всег известного биологического знания, его анализу и исследованию причи и факторов происхождения и эволюции живых систем. Без такого исследования невозможно было бы, во-первых , перейти на новый уровень познания, когда объектами изучения биологов стали живые структуры сначал на клеточном, а затем на молекулярном уровне. Во-вторых, обобщени и систематизация знаний об отдельных видах и родах растений и животных требовали перехода от искусственных классификаций к естественным где основой должен стать принцип генезиса, происхождения новых видов а следовательно, разработана теория эволюции. В-третьих, именно описательная, эмпирическая биология послужила тем фундаментом, на основ которого сформировался целостный взгляд на многообразный, но в то ж время единый мир живых систем.

Живое в настоящее время разделяют на онтогенетический, организмсн-ный и надорганизменный уровни.

Представление о структурных уровнях организации живых систем сформировалось под влиянием открытия клеточной теории строения живых тел. В середине прошлого века клетка рассматривалась как элементарная единица живой материи, наподобие атома неорганических тел. Исследовани проблемы строения живого, изучаемого молекулярной биологией, в середине XX столетия подвело к совершению научной революции. Во второ половине XX в. были выяснены вещественный состав, структура клетк и процессы, происходящие в ней.

Каждая клетка содержит в середине плотное образование, названное ядром, которое плавает в «полужидкой» цитоплазме. Все они вмест заключены в клеточную мембрану. Клетка нужна для аппарата воспроизводства, который находится в ее ядре. Без клетки генетический аппара не мог бы существовать. Основное вещество клетки - белки, молекул которых обычно содержат несколько сот аминокислот и похожи на бус или браслеты с брелочками, состоящими из главной и боковой цепей У всех живых видов имеются свои особые белки, определяемые генетическим аппаратом.

Попадающие в организм белки расщепляются на аминокислоты, которые затем используются им для построения собственных белков. Нуклеиновые кислоты создают ферменты, управляющие реакциями. Хотя в состав белков человеческого организма входят 20 аминокислот, но совершенн обязательны для него только 9. Остальные, по-видимому, вырабатываются самим организмом. Характерная особенность аминокислот, содержащихся не только в человеческом организме, но и в других живых система (животных, растениях и даже вирусах), состоит в том, что все они являются левовращающими плоскость поляризации изомерами, хотя в принципе существуют аминокислоты и правого вращения.

Дальнейшие исследования были направлены на изучение механизмов воспроизводства и наследственности в надежде обнаружить в них то специфическое, что отличает живое от неживого. Наиболее важным открытие на этом пути было выделение из состава ядра клетки богатого фосфоро вещества, обладающего свойствами кислоты и названного впоследстви нуклеиновой кислотой. В дальнейшем удалось выявить углеводный компонент этих кислот, в одном из которых оказалась Д-дезоксирибоза, а в другом Р-рибоза. Соответственно этому первый тип кислот стали называт дезоксирибонуклеиновыми кислотами, или сокращенно ДНК, а второ тип - рибонуклеиновыми, или кратко РНК.

Участки ДНК, существующие как функционально неделимые единицы - гены, кодируют структуру (аминокислотную последовательность) одного белка или рибонуклеиновой кислоты. Совокупность генов клетк или всего организма составляет генотип. В отличие от генотипа геном ил генофонд представляет собой характеристику вида, а не отдельной особи В 2001 г. был расшифрован геном человека. Длина генома человека (вс ДНК в 46 хромосомах) достигает 2 м и включает 3 млрд нуклеотидных пар.

Роль ДНК в хранении и передаче наследственности была выяснена после того, как в 1944 г. американским микробиологам удалось доказать что выделенная из пневмококков свободная ДНК обладает свойством передавать генетическую информацию.

Комплементарность - взаимное соответствие, обеспечивающее связь дополняющих друг друга структур (макромолекул, молекул, радикалов)В и определяемое их химическими свойствами. Комплементарность возможна, «если поверхности молекул имеют комплементарные структуры так что выступающая группа (или положительный заряд) на одной поверхности соответствуют полости (или отрицательному заряду) на другой Иными словами, взаимодействующие молекулы должны подходить друг к другу, как ключ к замку» (Дж. Уотсон). Комплементарность цепей нуклеиновых кислот основана на взаимодействии входящих в их состав азотистых оснований. Так, только при расположении аденина (А) в одной цепи против тимина (Т) (или урацила - У) - в другой, а гуанина (Г) - против цитозина (Ц) в этих цепях между основаниями возникают водородны связи. Комплементарность - по-видимому, единственный и универсальный химический механизм матричного хранения и передачи генетическо информации.

В 1953 г. Джеймсом Уотсоном и Френсисом Криком была предложена и экспериментально подтверждена гипотеза о строении молекулы ДНКВ как материального носителя информации. В 1960-е гг. французскими учеными Франсуа Жакобом и Жаком Моно была решена одна из важнейши проблем генной активности, раскрывающая фундаментальную особенность функционирования живой природы на молекулярном уровне. Он доказали, что по своей функциональной активности все гены разделяютс на «регуляторные», кодирующие структуру регуляторного белка, и «структурные гены», кодирующие синтез ферментов.

Воспроизводство себе подобных и наследование признаков осуществляется с помощью наследственной информации, материальным носителем которой являются молекулы дезоксирибонуклеиновой кислоты (ДНК) ДНК состоит из двух цепей, идущих в противоположных направления и закрученных одна вокруг другой наподобие электрических проводов Напоминает винтовую лестницу. Участок молекулы ДНК, служащи матрицей для синтеза одного белка, называют геном. Гены расположен в хромосомах (части ядер клеток). Было доказано, что основная функци генов состоит в кодировании синтеза белков. Механизм передачи информации от ДНК к морфологическим структурам предложил известны физик-теоретик Г. Гамов, указав, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК.

Молекулярный уровень исследования позволил показать, что основным механизмом изменчивости и последующего отбора являются мутации, возникающие на молекулярно-генетическом уровне. Мутация - это частичное изменение структуры гена. Конечный эффект ее - изменени свойств белков, кодируемых мутантными генами. Появившийся в результате мутации признак не исчезает, а накапливается. Мутации вызываютс радиацией, химическими соединениями, изменением температуры, наконец, могут быть просто случайными. Действие естественного отбора проявляется на уровне живого, целостного организма.

Поскольку минимальной самостоятельной живой системой можно считать клетку, постольку изучение онтогенетического уровня следует начать именно с клетки. В настоящее время различают три типа онтогенетического уровня организации живых систем, которые представляют собо три линии развития живого мира: 1) прокариоты - клетки, лишенны ядер; 2) эукариоты, появившиеся позднее, - клетки, содержащие ядра;

3) архебактерии - клетки которых сходны, с одной стороны, с прокариотами, с другой - эукариотами. По-видимому, все эти три линии развития исходят из единой первичной минимальной живой системы, которую можно назвать протоклеткой. Структурный подход к анализу первичных живых систем на онтогенетическом уровне нуждается в дополнительно освещении функциональных особенностей их жизнедеятельности и обмен веществ.

Клетки образуют ткани, а несколько типов тканей формируют органы. Группы органов, связанные с решением каких-то общих задач, называю системами организма.

Онтогенетический уровень организации относится к отдельным живым организмам - одноклеточным и многоклеточным. В разных организма число клеток существенно отличается. В соответствии с числом клеток вс живые организмы разделяют на пять царств.

Первые живые организмы имели одиночные клетки, затем эволюция жизни усложнила структуру и число клеток увеличилось. Одноклеточны организмы, имеющие простое строение, называются мономерами (греч «шопегеБ» - простой), или бактериями. Одноклеточные организмы с боле сложной структурой относят к царству водорослей, или проститов. Сред водорослей есть и простейшие многоклеточные организмы. К многоклеточным относят растения, грибы и животных. Живые организмы классифицируют в соответствии с их эволюционным родством, поэтому считается что многоклеточные имели своими предками простаты, а те произошл от монер. Но три многоклеточных царства произошли от разных проститов Каждая группа многоклеточных организмов - растений, животных и грибов - имеет свой план строения, приспособленный к своему образу жизни а у каждого вида в процессе эволюции сложилась определенная разновидность этого достаточно гибкого плана. Почти каждый вид состоит из различающихся по строению, но в то же время кровно родственных групп индивидов. Вид представляет собой не простое собрание индивидуумов, а сложну систему группировок, соподчиненных и тесно связанных друг с другом.

Вот так выглядит очень упрощенная схема соподчинения систематических единиц, используемая для естественной классификации:

ВИД - основная структурная и классификационная (таксономическая) единица в систематике живых организмов. Вид обозначается в соответствии с бинарной номенклатурой.

РОД - основная надвидовая таксономическая единица категория (ранг) в систематике растений и животных, объединяет близкие по происхождению виды.

КЛАСС (лат. «с1а881$» - разряд, группа), одна из высших таксономических категорий (рангов) в систематике животных и растений. Вид объединяют родственные отряды (животных) или порядки (растений). Класс имеет общий план строения и общих предков, включает тины (животных)В или отделы (растений).

ТИП - таксономическая категория (ранг) в систематике животных. В тип (иногда сначала подтип) объединяют близкие по происхождени классы. Все представители одного типа имеют единый план строения. Ти отражает основные ветви филогенетического древа животных. Все животные относятся к 16 типам. В систематике растений типу соответствует отдел.

ПОДЦАРСТВО (одноклеточные, многоклеточные).

ЦАРСТВО (растения, животные, грибы, дробянки, вирусы) - высшая таксономическая категория (ранг). Со времен Аристотеля органически мир подразделяется на два царства - растения и животные, а согласн новейшей систематике - на пять царств.

НАДЦАРСТВО (безъядерные и ядерные).

ИМПЕРИЯ (доклеточные и клеточные).

Известный немецкий биолог Э. Геккель открыл биогенетический закон для организменного уровня классификации живого, согласно которому онтогенез в краткой форме повторяет филогенез, т.е. отдельный организм в свое индивидуальном развитии в сокращенной форме повторяет историю рода.

Надорганизменный уровень рассматривает организмы во взаимосвязи с окружающей средой и начинается с популяции. Популяционный уровен начинается с изучения взаимосвязи и взаимодействия между совокупностями особей одного вида, которые имеют единый генофонд и занимаю единую территорию. Такие совокупности, или, скорее, системы живы организмов составляют определенную популяцию. Очевидно, что популяционный уровень выходит за рамки отдельного организма, и поэтом его называют надорганизменным уровнем организации. Популяция представляет собой первый надорганизменный уровень организации живы существ, который хотя и тесно связан с их онтогенетическим и молекулярными уровнями, но качественно отличается от них по характеру взаимодействия составляющих элементов, ибо в этом взаимодействии они выступаю как целостные общности организмов. По современным представления именно популяции служат элементарными единицами эволюции.

Второй надорганизменный уровень организации живого составляют различные системы популяций, которые называют биоценозами, ил сообществами. Они являются более обширными объединениями живы существ и в значительно большей мере зависят от небиологических, ил абиотических, факторов развития.

Третий надорганизменный уровень организации содержит в качестве элементов разные биоценозы, в еще большей степени характеризуетс зависимостью от многочисленных земных и абиотических условий своег существования (географических, климатических, гидрологических, атмосферных и т.п.). Для его обозначения применяется термин биогеоценоз или экологическая система (экосистем).

Четвертый надорганизменный уровень организации возникает из объединения самых разнообразных биогеоценозов и теперь называется биосферой.

Для характеристики трофического (пищевого) взаимодействия популяции и биоценозов существенное значение имеет общее правило, согласно которому чем длиннее и сложнее пищевые связи между организмам и популяциями, тем более жизнеспособной и устойчивой является живая система любого (надорганизменного) уровня. Отсюда становится ясным, что с биологической точки зрения на таком уровне решающее значени приобретает трофический характер взаимодействия между составляющими живую систему элементами.

Таким образом, на основе критерия масштабности выделяют следующие уровни организации живого (рис. 13.1):

биосферный - включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой;

уровень биогеоценозов, состоящий из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему;

популяционно-видовой - образуется свободно скрещивающимися между собой особями одного и того же вида;

организменный и органно-тканевый - отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функци органов и тканей живых существ;

клеточный и субклеточный - отражают процессы специализации клеток, а также различные внутриклеточные включения;

молекулярный - составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передач генной информации и развитие генной инженерии и биотехнологии.

Со времён Аристотеля все натуралисты и естествоиспытатели собирали коллекции и сведения об организмах. Одним из существенных результатов такой деятельности стало разделение орга-низмов на группы, что сделало их изучение более удобным.

Примеры на рисунке: 1. сине-зеленые водоросли; 2. перидинеи; 3. эвгленовые; 4. диатомеи; 5. хламидомонада; 6. ламинария; 7. одонталия; 8. папирус; 9. ризофора; 10. зостера; 11. морской котик; 12. пеликан; 11. бычок.

Учёные разделили всё живое на планете на группы по родственным признакам. Пять самых больших групп называются царства.

Таксономические категории

Определение и помещение в систему различных групп организмов — основная задача таксономии (греч. «таксис» — расположение в порядке + «номос» закон). Кроме того, таксономия определяет правила, по которым тот или иной организм следует помещать в какую-либо группу, что также является одной из задач естествознания.

Таксономия не ставит своей задачей выявление природных законов в явном виде, её цель другая — разделение множества организмов на группы, то есть создание системы и порядка, иными словами, способа, с помощью которого людям удобнее воспринимать всё многообразие живых организмов.

Поскольку система классификации организмов создана человеком, то не существует раз и навсегда установленного способа классификации . Вместо этого есть довольно большое число систем раз-деления организмов на царства, используемых различными систе-матиками. Система, где все организмы разделены на пять царств, пожалуй, является одной из самых простых.

В современной классификации из пяти царств три представляют собой многоклеточные организмы, а оставшиеся два — одноклеточные . Согласно данной системе любой многоклеточный организм является либо растением (Plantae), либо грибом (Fungi), либо животным (Animalia). Ясно, что именно растения, грибы и животные и есть царства. Соответственно одноклеточный организм может быть либо , либо монерой (Мопе rа).

Самое представительное царство — . Сюда входят все организмы, питающиеся готовыми органическими соединениями (растениями или другими животными).

К относятся в основном многоклеточные организмы, не способные самостоятельно передвигаться. Растения с помощью фотосинтеза, используя энергию солнечных лучей, преобразовывают неорганические вещества в органические.

Составляют организмы, не являющиеся ни животными, ни растениями — это, например, плесень, съедобные и ядовитые грибы.

В (лат. «протос» — первичный) входят простейшие. В царство протистов (эукариотов) включают микроскопические, обычно одноклеточные, организмы, имеющие ядра в клетках. Протистов и вправду в чём-то можно считать «самыми первыми» хотя бы потому, что они наиболее древние и в каком-то смысле самые простые из эукариотов. Ядро у них есть, и клетка может быть устроена весьма сложно, но как целостный организм они всё-таки проще, чем растения, грибы или животные. В качестве примера простейшего можно привести амебу. Амеба — это одноклеточный эукариот, который всё время меняет форму своего тела. При этом амеба двигается благодаря изменениям формы тела. Самые известные протисты — диатомеи (диатомические водоросли), перидинеи и эвгленовые, и другие жгутиковые водоросли.

Царство Monera — единственное царство, которое включает в себя бактерии , а также других прокариот. Клетки прокариот не могут быть устроены достаточно сложно, они также не могут образовывать многоклеточные организмы, или, образно говоря, остают-ся одни (греч. «mono» — один, одиночный). У бактерий и других монер всегда отсутствуют такие органеллы, образованные мембран-ными пузырьками, как, например, митохондрии или аппарат Гольджи. Таким образом, для монер характерны совсем другие черты клеточной анатомии и физиологии.

К (прокариотам) относят микроскопические, как правило одноклеточные, организмы, без ядра в клетках. Кроме собственно бактерий (стафилококки, вибрионы, спириллы и т.д), к царству Монер часто относят сине-зеленые водоросли (цианеи), примитивные одноклеточные.

Несмотря на маленький размер клетки и относительную простоту структурной организации, распространенность бактерий (и других монер) очень велика. Они составляют большую часть биомассы («живого веса») Земли. Все бактерии на планете весят больше, чем все слоны, киты, люди и жуки, вместе взятые!

Жизнь на Земле зародилась в океане. Поэтому в воде встречаются представители всех пяти царств живой природы, всех типов животных и многих отделов растений. В процессе эволюции многие из них покинули водную среду, а потом вторично вошли в неё.

Следующая ступень классификации — типы (у растений — отделы).

Основная категория биологической систематики — вид. Каждый вид (например, Человек разумный — Homo sapiens) имеет двой-ное латинское название, состоящее из родового и видового имён. Ро-довое имя пишется с заглавной буквы, видовое — со строчной.

А теперь рассмотрим биологическую систематику более подробно. Таксономические категории биологической систематики представляют следующую иерархию:

царство (regnum);

тип (phylum);

подтип (subphylum);

класс (classiis);

подкласс (subclassis);

отряд (у растений — порядок) (ordo);

подотряд (subordo);

семейство (familia);

подсемейство (subfamilia);

род (genus);

подрод (subgenus);

вид (species);

подвид (subspecies);

разновидность (varietas);

форма (forma).

В таксономии приняты правила, что каждому виду даётся уникальное латинское название, состоящее из двух слов. Первое сло-во — это название рода, оно является существительным и пишется с большой буквы, а второе слово — видовой эпитет — прилагатель-ное, которое пишется с маленькой. Например, современный чело-век имеет название Homo sapiens — человек разумный. Возможно, человека, если посмотреть на то, как он себя ведёт, и на то, какие проблемы в связи с этим возникают, и не всегда можно назвать разумным, однако это лишь биологическое название единственного ныне живущего вида рода Homo. Из палеонтологической летописи нам известны и другие (ныне вымершие) виды рода Homo: напри-мер, Homo habilis и Homo erectus.

За всю историю существования человечества накопилось немало знаний о разнообразии живой природы. С помощью науки систематики вся живая природа поделена на царства. В данной статье мы расскажем, какие царства живых организмов изучает биология, об их особенностях и характеристике.

Отличие живой природы от неживой природы

Отличительными признаками живой природы являются:

  • рост и развитие;
  • дыхание;
  • питание;
  • размножение;
  • восприятие и реагирование на воздействия из окружающей среды.

Однако отличить живые организмы от неживой природы не так просто. Дело в том, что по своему химическому составу многие объекты схожи. Так, например, кристаллы соли могут расти. А, например, семена растений, которые относятся к живой природе, долгое время находятся в состоянии покоя.

Все живые организмы делятся на два вида: неклеточные (вирусы) и клеточные , которые состоят из клеток.

В отличие от всех существующих живых организмов, вирусы не имеют клеток. Они селятся внутри клетки, вызывая тем самым различные заболевания.

Также характерным признаком всего живого является схожесть внутренних химических соединений. Важным фактором является обмен веществ с окружающей средой, а также реагирование на воздействия из внешней среды.

ТОП-4 статьи которые читают вместе с этой

Вся живая природа имеет свою классификацию. Царства, типы, классы живых организмов являются основой биологической систематики. Клеточные организмы состоят из двух надцарств: прокариоты и эукариоты. Каждая из них делится на отдельные царства, ступени иерархии научной классификации всех существующих биологических видов. В отдельные царства учёные объединяют бактерии, растения, грибы и животных.

Рис. 1. Царства живых организмов.

Человеческий организм относится к царству животных.

Бактерии

Данные организмы относятся к прокариотам, так как они не имеют ядерной оболочки. Внутри клетки отсутствуют органеллы, ДНК располагается непосредственно в цитоплазме. Обитают они повсеместно, их можно встретить в глубинах земной поверхности, и на горных вершинах.

Ещё одним видом прокариотов являются археи, которые обитают в экстремальных условиях. Их можно встретить в горячих источниках, водах мёртвого моря, кишечнике животных, почве.

Грибы

Эта группа живой природы достаточно разнообразна. Они делятся на:

  • шляпочные грибы (снаружи имеют ножку и шляпку, которые крепятся на поверхности грунта с помощью грибницы);
  • дрожжи ;
  • мукор - одноклеточный гриб микроскопических размеров. При его наличии образуется пушистый сероватый налёт, чернеющий со временем.

Растения

Внутри растительной клетки находятся органеллы, например, хлоропласты, способные проводить процесс фотосинтеза. Клетки растений окружены прочной стенкой, основой которых является целлюлоза. Внутри клетки находится ядро, цитоплазма с органоидами.

Рис. 2. Строение растительной клетки.

Животные

Животная клетка не имеет прочной стенки, как у растений, поэтому некоторые из них способны сокращаться, например, клетки мышечной системы. Животные активно двигаются, имеют опорно-двигательный аппарат. Внутри тела животного имеются целые системы органов, которые регулируют работу всего организма.

4.5 . Всего получено оценок: 506.

Живой мир нашей планеты бесконечно разнообразен и включает огромное число видов организмов, что видно из табл. 1

Таблица 1

Число видов основных групп живых существ

В действительности, как считают специалисты, на Земле сегодня обитает вдвое больше видов, чем известно науке. Ежегодно в научных публикациях описываются сотни и тысячи новых видов.

В процессе познания многочисленных предметов (объектов, явлений), сравнивая их свойства и признаки, люди производят классификацию. Затем сходные (подобные, похожие) объекты объединяются в группы. Разграничение групп базируется на различиях между изучаемыми предметами. Таким образом строится система, охватывающая все изученные объекты (например, минералы, химические элементы или организмы) и устанавливающая отношения между ними.

Систематика как самостоятельная биологическая дисциплина занимается проблемами классификации организмов и построением системы живой природы.

Попытки классифицировать организмы предпринимались еще в античные времена. Долгое время в науке существовала система, разработанная Аристотелем (IV в. до н. э.). Он подразделял все известные организмы на два царства - растения и животные, используя в качестве отличительных признаков неподвижность и нечувствительность первых по сравнению со вторыми. Кроме того, Аристотель разделял всех животных на две группы: «животные с кровью» и «животные без крови», что в целом соответствует современному делению на позвоночных и беспозвоночных. Далее он выделял ряд более мелких группировок, руководствуясь разными отличительными признаками.

Конечно, с позиций современной науки система Аристотеля кажется несовершенной, но необходимо учитывать уровень фактических знаний того времени. В его работе описывается всего лишь 454 вида животных, да и возможности методов исследований были весьма ограниченными.

На протяжении почти двух тысячелетий накапливался описательный материал в ботанике и зоологии, который обеспечил развитие систематики в XVII–XVIII вв., что нашло свое завершение в оригинальной системе организмов К. Линнея (1707–1778), получившей широкое признание. Опираясь на опыт предшественников и новые факты, обнаруженные им самим, Линней заложил основы современной систематики. Его книга, изданная под названием «Система природы», была опубликована в 1735 г.

За основную единицу классификации Линней принял вид; он ввел в научный обиход такие понятия, как «род», «семейство», «отряд» и «класс»; сохранил разделение организмов на царства растений и животных. Предложил введение бинарной номенклатуры (которая используется в биологии до сих пор), т. е. присвоение каждому виду латинского названия, состоящего из двух слов. Первое - существительное - название рода, объединяющего группу близких видов. Второе слово - обычно прилагательное - название собственно вида. Например, виды «лютик едкий» и «лютик ползучий»; «карась золотой» и «карась серебряный».

Позднее, в начале XIX в., Ж. Кювье ввел в систему понятие «тип» как высшую единицу классификации животных (в ботанике - «отдел»).

Особое значение для формирования современной систематики имело появление эволюционного учения Ч. Дарвина (1859 г.). Научные системы живых организмов, созданные в додарвиновский период, были искусственными. Они объединяли организмы в группы по сходным внешним признакам достаточно формально, не придавая значения их родственным связям. Идеи Ч. Дарвина снабдили науку методом построения естественной системы живого мира. Это означает, что та должна базироваться на каких-то сущностных, основополагающих свойствах классифицируемых объектов - организмов.

Попробуем в качестве аналогии построить «естественную систему» таких объектов, как книги, на примере личной библиотеки. При желании мы можем расставить книги на полках шкафов, группируя их либо по формату, либо по цвету корешков. Но в этих случаях будет создана «искусственная система», так как «объекты» (книги) классифицируются по второстепенным, «несущностным», свойствам. «Естественной» же «системой» будет библиотека, где книги сгруппированы в соответствии с их содержанием. В этом шкафу у нас научная литература: на одной полке книги по физике, на другой - по химии и т. д. В другом шкафу - художественная: проза, поэзия, фольклор. Таким образом, мы осуществили классификацию имеющихся книг по главному свойству, сущностному качеству - их содержанию. Имея теперь «естественную систему», мы легко ориентируемся во множестве разнообразных «объектов», ее образующих. А приобретя новую книгу, легко найдем ей место в конкретном шкафу и на соответствующей полке, т. е. в «системе».

Фундаментальной основой современной систематики служат идеи о единстве происхождения живых организмов и эволюции органического мира, приведшей к существующему многообразию этих организмов. Руководствуясь такими идеями, современная наука строит естественную систему на основе филогенетического родства (т. е. общности происхождения, близости и дальности родственных отношений между разными видами) классифицируемых организмов. Степень же родства сравниваемых видов устанавливается на основе их морфологического, анатомического, биохимического, генетического и т. д. сходства и различия.

Для построения системы организмов применяется иерархичность (соподчинение) таксономических (систематических) единиц : виды группируются в роды, роды - в семейства, семейства - в отряды, отряды - в классы, классы - в типы. Различные типы объединяются в царства. Таксономическая единица более высокого ранга объединяет организмы по наиболее крупным и значительным, существенным и основополагающим признакам. Чем ниже ранг, тем более частный, подчиненный характер имеют признаки, по которым осуществляется группировка видов в пределах данного таксона.

Рассмотрим, например, место в системе живых организмов человека как самостоятельного биологического вида (табл. 2).

Таблица 2

Место человека в системе животного царства

Царство

Животные

Хордовые

Подтип

Позвоночные

Класс

Млекопитающие

Отряд

Семейство

Человекообразные

Человек (Homo)

Человек разумный (Homo sapiens)

В течение всего ХХ в. систематика интенсивно развивалась, и этот процесс продолжается и сейчас. Благодаря достижениям в разных областях биологии и других естественных наук накоплен огромный фактический материал, заставляющий подвергнуть серьезному пересмотру существующие системы живых организмов.

Напомним, что еще Аристотель разделил все множество живых существ на два царства - растения и животные . Подобное представление сохранялось почти до середины XX в., когда началась фундаментальная перестройка всей системы высших таксонов. Еще в 1934 г. Е. Шаттон (французский микробиолог) предложил выделить бактерии в особое надцарство - прокариоты .

Но только в 1970-е гг. с помощью электронной микроскопии и молекулярной биологии удалось установить фундаментальные различия между прокариотными и эукариотными организмами, заключающиеся прежде всего в клеточной организации представителей этих надцарств. К несколько ранним годам относится и выделение нового (третьего) царства эукариот - грибов , предложенное в 1969 г. Р. Г. Уиттейкером (американским экологом) и сразу же принятое в научном мире. Грибы ранее включались в царство растений, хотя отличаются от последних и типом обмена веществ, и особенностями клеточной организации, и многими другими признаками.

В настоящее время остро обсуждается вопрос о выделении еще одного царства эукариотных организмов (царства протистов ), которые отличаются от всех остальных эукариот тем, что представлены преимущественно одноклеточными формами, а многоклеточные (точнее говоря - колониальные) среди них не имеют настоящих тканей. Таким образом, к этому царству должны быть отнесены простейшие, многие водоросли и некоторые грибы, включаемые ранее в три разных царства - животных, растений и грибов соответственно.

Около двух десятков лет тому назад в макросистеме организмов среди прокариот стали отмечать новое царство - архебактерии . Представители данной группы привлекли к себе пристальное внимание биологов. Будучи бесспорно прокариотными организмами (т. е. не имеющими оформленного ядра в клетке), они по организации генетического аппарата, ряду биохимических свойств, особенностям обмена веществ обнаруживают определенную близость к эукариотам. Обобщая все изложенное выше, можно представить современную макросистему живого в виде табл. 3.

Таблица 3

Макросистема организмов

Надцарство - прокариоты (доядерные организмы )

Надцарство - эукариоты (ядерные организмы )

1-е царство - архебактерии

1-е царство - протисты

2-е царство - растения

2-е царство - эубактерии

3-е царство - грибы

4-е царство - животные

Сегодня мы не в состоянии однозначно ответить на вопрос о происхождении вирусов и, соответственно, найти им надлежащее место в единой макросистеме организмов.

За пределами последней остается и такая группа, как лишайники. Как известно, данные организмы представляют собой неразрывное двуединство - симбиоз гриба и клеток водорослей (либо цианобактерий). Форма тела лишайника своеобразная, отличающаяся от свободноживущих грибов, хотя оно и образовано переплетением грибных гиф. Одни исследователи классифицируют лишайники в единой системе с грибами, другие рассматривают их как самостоятельную группу в царстве растений.

Очевидно, что по мере развития биологии, всех ее дисциплин и разделов систематика подвергнется уточнению, а естественная система живых организмов будет совершенствоваться.

Систематика живых организмов ставит себе чрезвычайно важные теоретические и практические задачи. Главная теоретическая задача - изучить и привести в естественный порядок огромное количество видов, родов и семейств растений, животных, бактерий, грибов. Причем этот порядок, называемый системой, должен отражать исторический ход эволюции биосферы.

Первые известные классификации форм жизни предприняли в античном мире Аристотель и Теофраст. Они дали очень подробную систему живых организмов, в которой объединяли все живое в соответствии со своими философскими взглядами. Растения в этой классификации были разделены на деревья и травы, а животные - на группы с «горячей» и «холодной» кровью. Последний признак имел большое значение для выявления упорядоченности в живой природе.

Эпоха великих открытий существенно обогатила знания ученых о живой природе. В конце XVI - начале XVII в. начинается новая эра в изучении живого мира, вначале направленная на хорошо известные ранее тины. Постепенно расширяясь, накопился необходимый минимум знаний, составивший основу научной классификации. В 1583 г. была осуществлена первая попытка дать научную систему растений, с помощью которой можно было бы разобраться в хаосе собранных к тому времени сведений о растениях. Эта попытка принадлежит А. Чезальпино, написавшему труды иод названием «XVI книг о растениях». Первый отдел «Древесные растения» и «Травянистые растения» совершенно искусственен. Каждое из этих подразделений делится на классы, которых всего 15. Классы выделены по виду плода и количеству и расположению в нем семян. Один класс - растения без плодов и семян - включает папоротники, хвощи, мхи, грибы и кораллы. Вообще в каждом классе встречаются растения, не имеющие родства между собой. Эта система искусственна, потому что основана на одном-двух признаках. Но Чезальпино положил начало систематике растений, и с 1583 г. начался период создания искусственных систем.

Классификацией животных занималась многие известные медики, такие как И. Фабриций, П. Серенсен, У. Гарвей, Э. Тайсон. Свой вклад сделали М. Мальпиги, Р. Гук и некоторые другие ученые.

К началу XVIII в. наукой был накоплен достаточно большой объем биологических знаний, однако с точки зрения структурирования этих знаний биология существенным образом отставала от других естественных наук. Значительным вкладом в устранении этого отставания стали работы шведского естествоиспытателя К. Линнея. Он заложил основы научной систематики, что позволило биологии в короткие сроки стать полноценной научной дисциплиной. Линней был автором одной из известнейших искусственных систем растений, в которой цветковые растения распределялись по классам в зависимости от числа тычинок и пестиков в цветке. Линней хорошо понимал разницу между искусственными и естественными системами. Он говорил следующее: в естественных системах классы заключают растения, близкие между собой, сходные всем обликом и своей природой. Искусственные же состоят из классов, содержащих роды, отличные друг от друга, как небо от земли, и обладающие только одним общим признаком, избранным автором.

Для того, чтобы внести порядок в описательную ботанику, Линней сознательно предложил свою искусственную систему, позаботившись о том, чтобы она была самой легкой. Он разделил природный мир на три царства - минеральное, растительное и животное. Ученый разделил растительный мир на 24 класса, применив признаки количества тычинок, способа их срастания и распределения однополых цветков. Всех животных Линней разделил на шесть классов: млекопитающие, птицы, амфибии, рыбы, черви, насекомые. В класс амфибий входили пресмыкающиеся и земноводные, все известные в его время формы беспозвоночные, кроме насекомых, он отнес к классу червей. Одно из примечательных достоинств этой искусственной классификации в том, что человек был совершенно справедливо отнесен к системе животного царства и включен в класс млекопитающих, в отряд приматов.

Классификации растений и животных, предложенные Линнеем, с современной точки зрения искусственны, так как они основаны на небольшом числе произвольно взятых признаков и не отражают действительного родства между разными формами. Так, на основании одного лишь общего признака - строение клюва - Линней пытался построить «естественную» систему, основанную на совокупности множества признаков, но не достиг цели. Несмотря па искусственность, система была полезна как наиболее легкая для практического применения. Он ввел в классификацию четыре уровня (ранга): классы, отряды, роды и виды. Использованный Линнеем метод формирования научного названия для каждого из видов используется до сих пор. Использование латинского названия из двух слов - название рода, затем видовой эпитет - позволило устранить путаницу в названиях. Данное соглашение о названиях видов получило наименование «бинарная номенклатура».

Линней описал множество видов и родов и дал им названия, которые считаются приоритетными и используются до сих пор. Однако он сознавал необходимость создания естественной системы, отмечая, что это является основной задачей систематики.

В конце XVIII - начале XIX в. стали появляться системы, учитывающие все большее число признаков, были выделены современные отделы и тины.

Новую эру в естествознании открыл Ч. Дарвин в 1859 г. Он предложил понимать естественную систему как результат исторического развития живой природы. Его работы по теории эволюции положили начало повой эпохе в истории систематики, основанной на родстве организмов. Так возникла эволюционная систематика, взявшая за основу выяснение происхождения организмов.

До 1980-х гг. описание видов живых организмов, эволюционных взаимосвязей между ними, построение филогенетических (эволюционных) деревьев осуществлялись, как правило, на основе сравнительной эмбриологии, анатомии, морфологии и палеонтологических материалов. На сегодняшний день науке известно около 1,7 млн видов живых организмов, в то время как по оценочным данным их существует не менее 10 млн. Таким образом, 80% видов еще не описано. Если бы изучение биоразнообразия продолжалось классическими методами, то на полную каталогизацию Природы понадобились бы многие десятилетия .

Новый метод - ДНК-штрихкодирование - значительно ускоряет этот процесс. Он является наиболее точным методом для установления генетических взаимосвязей между видами. Выделенные отдельные молекулы ДНК каждого из видов совмещаются так, чтобы между ними началась реакция. Некоторые участки образуют «гибриды» - двойную спираль, т.е. обычную структуру ДНК, и степень их соединения является показателем количества последовательностей основании, являющихся дополнительными друг к другу. Этот показатель, в свою очередь, служит мерой родства между видами.

Анализ нуклеотидных последовательностей во многом меняет устоявшиеся представления о родстве видов и самой их идентичности, а иногда приводит к глобальному пересмотру крупных таксонов. Так, в результате исследования гена 16S рРНК в 1985 г. К. Везе разделил прокариотические организмы, которые ранее все назывались просто «бактериями», на два надцарства: эубактерии («настоящие» бактерии) и археи. (Есть интересные примеры выявления новых видов животных с помощью ДНК.) Жуков рода Rivacindela и бабочек рода Dioryctria сначала разбили на группы на основе анализа ДНК, а затем уже нашли морфологические и поведенческие отличия между ними. В пробах мелких донных пресноводных организмов была проведена идентификация последовательностей ДНК и на ее основе выявлены виды простейших, нематод, ракообразных и т.д. Ученые назвали такой метод «обратной таксономией». Проводятся также результаты масштабного исследования ДНК китообразных. В 1982 г. была создана одна из первых международных открытых баз генетических данных GcnBank. Международная программа «Штрихкод жизни» ставит своей целью создание библиотеки штрихкодов для всех видов на Земле .

Сегодня систематика принадлежит к числу бурно развивающихся биологических наук, включая все новые и новые методы: методы математической статистики, компьютерный анализ данных, сравнительный анализ ДНК и РНК, анализ ультраструктуры клеток и многие другие. Главным в современной систематике является построение естественной системы, которая, в отличие от искусственных систем, указывает на родственные связи между организмами. На сегодняшний день систематика организмов очень быстро меняется и ни одна из систем не является общепризнанной. Рассмотрим одну из них.

Все живые организмы на основании строения делят на две империи или два домена: клеточные и неклеточные. К последним относятся вирусы и фаги, не имеющие клеточного строения. На основании строения клетки клеточные живые организмы делятся на надцарства.

Система живых организмов:

  • 1. Надцарство Доядерные организмы, или Прокариоты.
  • 1.1. Царство Эубактерии.
  • 1.2. Царство Архси.
  • 2. Надцарство Ядерные организмы, или эукариоты.
  • 2.1. Царство Животные.
  • 2.2. Царство Грибы.
  • 2.3. Царство Растения.

Надцарства делятся на царства, далее на подцарства. Животные (лат. Animalia или Metazoa) - традиционно (со времен Аристотеля) выделяемая категория организмов, в настоящее время рассматривается в качестве биологического царства. Животные являются основным объектом изучения зоологии. Растения изучает современная ботаника. Грибы - микология.

В царстве животных выделяют два подцарства: одноклеточные Protozoa и многоклеточные Metazoa. Далее подцарства делятся на типы, затем на подтипы, классы, отряды, семейства, роды и виды. Название вида состоит из существительного и прилагательного. Например, человек разумный. Существительное - это название рода, а прилагательное - вида. Попробуем определить принадлежность к этим категориям нашей домашней кошки. Она относится к домену клеточных, надцарству эукариоты, царству животные, типу хордовые, подтипу позвоночные, классу млекопитающие, отряду хищные, семейству кошачьи, роду кошки, виду лесной кот. Человек также является представителем животного мира и относится к виду человек разумный.

Царство растения делят на три подцарства: Водоросли, Багрянки и Высшие растения. К подцарству Водоросли относятся от восьми до десяти отделов различных водорослей. К нодцар- ству Высших растений относят растения из ныне существующих отделов: моховидные, плауновидные, хвощевидные, папоротниковидные, голосеменные и покрытосеменные растения. Отдел в ботанике соответствует типу в зоологической классификации. Определим в качестве примера положение в классификации растений вида ромашка пахучая. Она относится к домену клеточных, надцарству эукариоты, царству растения, отделу (типу) покрытосеменные, классу двудольные, семейству сложноцветные, роду ромашка, виду ромашка пахучая.

  • См.: URL: http://elemcnty.ru/gcnbio/synopsis?artid=246
  • См.: Шнеер В. С. ДНК-штрихкодирование видов животных и растений -способ их молекулярной идентификации и изучения биоразнообразия // Журналобщей биологии. 2009. № 4. С. 296-315.