Использование знаний о биогеохимической деятельности микроорганизмов на уроках биологии. Реферат: Участие прокариот в круговороте серы Биосфера – единый живой организм

На современном этапе развития главная цель, стоящая перед школьным образованием, и в том числе перед биологическим, - подготовка культурного, высокообразованного человека, творческой личности. Решение этой глобальной задачи направлено на возрождение духовных, нравственных традиций, приобщение учеников к культуре, созданной за тысячелетнюю историю человечества, формирование нового стиля мышления - биоцентрического, без которого невозможно сохранение жизни в биосфере.

Биология вносит существенный вклад в формирование у школьников научной картины мира, здорового образа жизни, гигиенических норм и правил, экологической грамотности; в подготовку молодежи к трудовой деятельности в области медицины, сельского хозяйства, биотехнологии, рационального природопользования и охраны природы. (3,6)

Содержание биологического образования включает знания об уровне организации и эволюции живой природы; биоразнообразии; обмене веществ и превращении энергии; размножении и индивидуальном развитии организмов, их связях со средой обитания и приспособленности к ней; об организме, его биологической природе и социальной сущности; санитарно-гигиенических нормах и правилах здорового образа жизни. (4,6)

Реализация этих задач осуществляется через программы и учебно-методические образования. В настоящее время существует несколько учебно-методических комплектов по биологии. Учитель может выбрать один из них с учетом особенностей регионов, уровня подготовки учащихся, специализации обучения в школе.

Именно от выбора программы зависит, в какой последовательности и как глубоко учащиеся будут изучать материал.

По программе Сивоглазова В.И., Сухова Т.С., Козлова Т.А. в книге для учителя «Биология: общие закономерности» тема «Биогеохимическая деятельность микроорганизмов» не рассматривается как самостоятельная на отдельном уроке, а является составной частью других тем. Например, на уроке по теме «Значение прокариот в биоценозах, их экологическая роль» изучаются такие вопросы, как участие бактерий во всех процессах, происходящих в органическом мире на Земле; роль бактерий в круговороте веществ, обеспечивающих жизнь на Земле, а также участие бактерий в круговороте важнейших элементов. На уроке по теме «Круговорот веществ в природе» наряду с другими вопросами рассматривается деятельность азотфиксирующих бактерий, благодаря которым атмосферный азот включается в круговорот, а также рассматривается деятельность микроорганизмов, участвующих в круговороте углерода, серы.

Рассмотрим эти уроки более подробно.

ЗНАЧЕНИЕ ПРОКАРИОТ В БИОЦЕНОЗАХ, ИХ ЭКОЛОГИЧЕСКАЯ РОЛЬ»

Опорные точки урока

Бактерии как примитивные формы жизни, обитающие повсюду: в воде, в почве, в пищевых продуктах, во всех географических областях Земли

Участие бактерий во всех процессах, происходящих в органическом мире на Земле

Роль бактерий в круговороте веществ, обеспечивающих жизнь на Земле

Участие бактерий в круговороте важнейших элементов

Болезнетворные бактерии, их роль в дикой природе и в цивилизованном обществе

Бактерии и пищевая промышленность

Роль бактерии в земледелии

Цианеи (сине-зеленые) -- наиболее древние из организмов, содержащих хлорофилл

Индикаторная роль цианей (сине-зеленых) как показателей степени загрязнения водоемов.

Задачи:

1. Охарактеризовать все возможные среды обитания прокариот на нашей планете.

2. Обосновать «вездесущность» бактерий и цианей (сине-зеленых) особенностями их строения, физиологических процессов и жизненных циклов.

3. Сформировать знания учащихся о важной экологической роли прокариот.

Ответьте на вопросы. Выполните задания:

1. Какое строение имеет бактериальная клетка?

2. Охарактеризуйте половой процесс бактерий.

3. На основании каких признаков, присущих сине-зеленым, их можно отнести к прокариотам?

4. Заполните схему, раскрывающую роль бактерий в природе и в жизни человека.

Роль бактерий в природе и в жизни человека

1..... 3..... 5.....

Колоссальную роль в биосфере играют бактерии, заселившие гидросферу, атмосферу в наибольшей степени, - литосферу. Быстрота их размножения и жизнедеятельность влияет на круговорот веществ в биосфере.

Основные положения

1. В биосфере совершается постоянный круговорот активных элементов, переходящих из организма в организм, в неживую природу и снова в организм. Главную роль в этом процессе играют бактерии гниения.

2. Прокариоты в силу своей способности к быстрому размножению обладают громадной генетической изменчивостью и приспособляемостью. По способу питания и использованию энергии различают несколько групп бактерии.

3. Приспособленность каждой группы бактерий к особым условиям среды (узкая специализация жизнедеятельности) приводит к тому, что одни бактерии сменяются другими в одной и той же среде. Например, в почве гнилостные бактерии разлагают органические остатки, выделяя аммиак, который другие бактерии превращают в азотистую, а затем в азотную кислоту. Величайший процесс в биосфере, осуществляемый бактериями, -- разложение при гниении всех мертвых тел всех обитателей Земли.

Справка

Вода, в 1 мл которой содержится 10 бактерий, остается на вид прозрачной, не замутненной.

Вопрос для размышления . Почему Л. Пастер назвал бактерии «великими могильщиками природы»?

Вопросы и задания для повторения.

1. Под действием каких организмов происходит полное разложение органического вещества отмерших особей на нашей планете?

2. Влияние каких экологических факторов может способствовать уничтожению бактерий?

3. Почему загрязнение почвы нефтепродуктами резко отрицательно скажется на состоянии всего биогеоценоза?

4. Почему бактерии относятся к группе: редуцентов в любом биогеоценозе?

5. Каким образом болезнетворные бактерии могут влиять на состояние макроорганизма (хозяина)?

6. В каких случаях в водоемах может наблюдаться массовое размножение синезелёных? К чему это может привести?

Информация для учителя

Бактерии и цианеи (синезеленые) распространены повсюду. Споры бактерий залетают на высоту 20 км, анаэробные бактерии проникают в земную кору на глубину свыше 3 км.

Споры некоторых бактерий сохраняют жизнеспособность при температуре -- 253°С. В одном грамме бактерий свыше 600 млрд. особей. Количество бактерий в одном грамме почвы измеряется сотнями миллионов.

Дополнительное задание

Напишите реферат на тему: «Неделя без бактерий на Земле».

Ответ от КоШкА[гуру]
Прокариоты иным образом осуществляют фотосинтез, нежели растения. Бактерии используют в этом процессе пигмент бактериохлорин
и не выделяют кислород в окружающую среду. Фотоавтотрофные архебактерии осуществляют фотосинтез при помощи бактериородопсина, а цианобактерии помимо хлорофилла имеют еще дополнительно два других пигмента: фикоцианин и фикоэритрин. Указанные факты показывают, что природа предусмотрела для реализации синтеза первичного органического вещества несколько пигментов, которые существенно расширяют спектральный состав излучения, доступного для фотосинтеза. Среди прокариот значительно распространен хемосинтез. Кроме того, среди бактериальных организмов имеются азотофиксирующие формы: это единственная на нашей планете группа живых организмов, которые способны усваивать азот непосредственно из атмосферного воздуха и таким образом вовлекать молекулярный азот в биологический цикл.
Бактерии и синезеленые включают в состав органического вещества до 90% всего входящего в биогенный цикл азота; оставшиеся же 10% азота связываются грозовыми электрическими разрядами. Из сказанного следует, что важнейшей функцией прокариот в биосфере является вовлечение в круговорот элементов из косной (неживой) природы.
В то же время прокариоты имеют еще и другую важнейшую функцию, прямо противоположную первой: возвращение неорганических веществ в окружающую среду путем разрушения (минерализации) органических соединений. Гетеротрофные бактерии функционируют не только в почве и воде, но и в кишечнике очень многих животных, где они интенсивно воздействуют переводу сложных соединений углеводов в более простые формы.
На уровне биосферы в целом прокариоты, в первую очередь бактерии, обладают еще одной очень важной функцией - концентрационной. Исследованиями установлено, что микроорганизмы способны активно извлекать из окружающей среды определенные элементы даже при крайне низких их концентрациях. Например, в продуктах жизнедеятельности некоторых микроорганизмов содержание железа, ванадия, марганца и ряда других в сотни раз выше, чем в окружающей их среде. Деятельностью бактерий собственно и созданы естественные месторождения этих элементов.
Свойства и функции прокариот настолько разнообразны, что в принципе они способны создавать устойчиво функционирующие свойственные (т. е. только при своем участии) экосистемы. Недаром в истории жизни на Земле почти 2 млрд. лет она и была представлена прокариотами. "Именно цианобактерии первыми заселили атолл Бикини после ядерного взрыва и остров Суррей, возникший в 1963 году в результате извержения подводного вулкана южнее Исландии. Высокая устойчивость к внешним воздействиям (ряд видов прокариот выдерживают температуру выше 100° С, кислую среду с рН около 1, соленость с содержанием в растворе 20-30% галита NaCl) превращает эту группу в представителей живого вещества в самых экстремальных условиях" (Шилов И. А. , 2000, с. 56)
еще смотри тут:
ссылка

Прокариоты иным образом осуществляют фотосинтез, нежели растения. Бактерии используют в этом процессе пигмент бактериохлорин
и не выделяют кислород в окружающую среду. Фотоавтотрофные архебактерии осуществляют фотосинтез при помощи бактериородопсина, а цианобактерии помимо хлорофилла имеют еще дополнительно два других пигмента: фикоцианин и фикоэритрин. Указанные факты показывают, что природа предусмотрела для реализации синтеза первичного органического вещества несколько пигментов, которые существенно расширяют спектральный состав излучения, доступного для фотосинтеза. Среди прокариот значительно распространен хемосинтез. Кроме того, среди бактериальных организмов имеются азотофиксирующие формы: это единственная на нашей планете группа живых организмов, которые способны усваивать азот непосредственно из атмосферного воздуха и таким образом вовлекать молекулярный азот в биологический цикл.
Бактерии и синезеленые включают в состав органического вещества до 90% всего входящего в биогенный цикл азота; оставшиеся же 10% азота связываются грозовыми электрическими разрядами. Из сказанного следует, что важнейшей функцией прокариот в биосфере является вовлечение в круговорот элементов из косной (неживой) природы.
В то же время прокариоты имеют еще и другую важнейшую функцию, прямо противоположную первой: возвращение неорганических веществ в окружающую среду путем разрушения (минерализации) органических соединений. Гетеротрофные бактерии функционируют не только в почве и воде, но и в кишечнике очень многих животных, где они интенсивно воздействуют переводу сложных соединений углеводов в более простые формы.
На уровне биосферы в целом прокариоты, в первую очередь бактерии, обладают еще одной очень важной функцией - концентрационной. Исследованиями установлено, что микроорганизмы способны активно извлекать из окружающей среды определенные элементы даже при крайне низких их концентрациях. Например, в продуктах жизнедеятельности некоторых микроорганизмов содержание железа, ванадия, марганца и ряда других в сотни раз выше, чем в окружающей их среде. Деятельностью бактерий собственно и созданы естественные месторождения этих элементов.
Свойства и функции прокариот настолько разнообразны, что в принципе они способны создавать устойчиво функционирующие свойственные (т. е. только при своем участии) экосистемы. Недаром в истории жизни на Земле почти 2 млрд. лет она и была представлена прокариотами. "Именно цианобактерии первыми заселили атолл Бикини после ядерного взрыва и остров Суррей, возникший в 1963 году в результате извержения подводного вулкана южнее Исландии. Высокая устойчивость к внешним воздействиям (ряд видов прокариот выдерживают температуру выше 100° С, кислую среду с рН около 1, соленость с содержанием в растворе 20-30% галита NaCl) превращает эту группу в представителей живого вещества в самых экстремальных условиях" (Шилов И.А., 2000, с. 56)

Термин «биосфера » был введен в научную литературу в конце XIX в. геологом Э. Зюссом для обозначения особой земной оболочки, населенной живыми организмами. Целостное учение о биосфере было создано в первой половине XX в. крупнейшим естествоиспытателем-геохимиком В. И. Вернадским.

На основании анализа истории атомов в земной коре и в ее верхней, охваченной жизнью, оболочке Вернадский пришел к выводам исключительного теоретического и, как впоследствии стало ясно, практического значения. Он показал, что биосфера не только населена живыми организмами, но и в существенной степени геохимически ими переработана; это не только среда жизни, но и продукт жизнедеятельности обитавших на земле во все геологические времена живых организмов - живого вещества планеты. Это положение, имеющее исключительно большое значение для геохимии, А. И. Перельман предложил именовать «законом Вернадского» и сформулировал его так: «Миграция химических элементов в биосфере осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О 2 , СО 2 , H 2 S и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет данную систему, так и тем, которое действовало в биосфере в течение геологической истории» (Перельман, 1979, с. 215).

На раннем этапе развития биологии существовало представление, что все живое, обитающее на Земле, подразделяется на два «царства» организмов: флору и фауну, или царство растений - Plantae и царство животных - Animalia. В XVIII-XIX вв. с момента открытия и последующего интенсивного изучения мира микроорганизмов стало необходимым выделение нового третьего царства живых существ, названного Геккелем (1866) царством протистов. Появление новых разделов биологии, в частности молекулярной биологии, усовершенствование техники микроскопирования, применение электронной микроскопии, разработка новых современных методов исследования микроорганизмов способствовали дальнейшему выделению новых царств живой природы; в современных классификациях обособляются пять царств, объединенных по типу строения клетки в две группы (R. Murray, 1968; R. Whittaker, 1969):

царство животных - Animalia

Эукариоты царство растений - Plantae

царство протистов - Protista

царство грибов - Mycota

Прокариоты царство бактерий - Procaryota

Прокариотический тип микробной клетки характерен для бактерий, актиномицетов и синезеленых водорослей. Ее основная особенность - отсутствие четкой границы между ядерным веществом, цитоплазмой и отсутствие ядерной мембраны. Область ядра (так называемый нуклеоид) заполнена ДНК, не связанной с белком и не образующей структур, похожих на хромосомы эукариотов. Нет также митохондрий и хлоропла- стов, а клеточная стенка состоит из гетерополимерного вещества, которое не обнаружено ни у одного из эукариотических организмов. В цитоплазме фотосинтезирующих бактерий имеются тилакоиды, содержащие пигменты (хлорофиллы и каротиноиды), с помощью которых осуществляется фотосинтез. У некоторых видов бактерий в клетках накапливаются гранулы жира и волютина.

Эукариотический тип клетки свойствен грибам, водорослям, простейшим (имеет сходство с клетками растений, животных и человека). Она более сложна: ядро с двухслойной ядерной пористой мембраной отделено от цитоплазмы, в нем находится одно-два ядрышка, внутри которых синтезируется РНК (рибонуклеиновая кислота) и содержатся хромосомы - носители наследственной информации, состоящие из ДНК и белка. В цитоплазме есть также митохондрии (участвующие в процессах дыхания) и у водорослей хлоропласты (преобразующие лучистую энергию в химическую).

По данным абсолютной геохронологии и палеонтологии, использующей новейшие методы биохимии, 4-3,5 млрд. лет назад в архее уже существовала жизнь. При глубоком опорном бурении, поставленном в СССР на Русской платформе, в метаморфизованных осадочных породах архея обнаружено много углеродистых продуктов преобразования первых фотосинтезирующих организмов - синезеленых водорослей и мельчайших органических телец бактериального происхождения. Эти прокариотические организмы - бактерии и цианофиты, появившиеся еще в бескислородной атмосфере (но обладающие фотосинтетическим аппаратом) - единственные обитатели Земли в течение более 1 млрд. лет, были первыми продуцентами свободного кислорода в ее атмосфере.

В конце архея и начале протерозоя - 2,6-2,2 млрд. лет назад - атмосфера Земли уже содержала достаточно кислорода для осуществления окислительных процессов. В породах этого возраста обнаружены сульфаты (продукты окисления сульфидов), латеритные бокситоносные формации, содержащие окислы Fe (Сидоренко, Теняков и др.). В породах протерозоя, возраст которых 2 млрд. лет, обнаружены железобактерии (Заварзин, 1972). Таким образом, уже в архее и нижнем протерозое в результате газовых и окислительных функций микроорганизмов была преобразована населенная ими сфера Земли настолько, что она приобрела геохимические черты современной биосферы.

Наличие свободного кислорода в атмосфере стало условием для развития многообразных форм жизни - эукариотных простейших и многоклеточных растений и животных. На схеме эволюции органического мира, по представлениям палеонтолога академика Б. С. Соколова, показаны основные этапы развития жизни не только в палеозое и мезозое (изучением которых значительное время занималась палеонтология), но и в архее, афебии (среднем и нижнем протерозое) - длительном периоде истории Земли, когда господствовали простейшие организмы, а более сложные появились в рифее (верхнем протерозое). Древнейшие бактерии, синезеленые водоросли (цианофиты), грибы, простейшие, с деятельностью которых связано формирование биосферы, были во все геологические времена и продолжают существовать сегодня.

С развитием и дифференциацией жизненных форм осваивались все экологические ниши биосферы, все многообразнее становилась их геохимическая деятельность. Наряду с газовыми и окислительно-восстановительными функциями приобрели колоссальное планетарное значение концентрационные функции живых организмов, особенно ярко проявившиеся в отношении С, Са, Si.

Фотосинтетическая деятельность организмов и концентрация углерода и солнечной энергии в форме органических веществ определили глобальное распространение формации углеродисто-кремнистых и горючих сланцев в протерозое и палеозое. Развитие в кембрии морской фауны с известковым, фосфатным и кремнистым скелетом положило начало накоплению мощных свит органогенных пород, которое продолжалось во все последующие геологические эпохи. Формирование этих пород в значительной мере связано с деятельностью микроорганизмов: литифицированные клетки коколитофоридов обнаружены во всех известковых осадках; скопления кремневых скелетов диатомовых водорослей и радиолярий образуют диатомиты и трепелы.

Разнообразные геохимические функции микроорганизмов, их высокая ферментативная активность существенно влияют на геохимические процессы и современной биосферы.

Биосфера включает несколько геосфер: тропосферу, гидросферу (Мировой океан), педосферу и верхнюю часть литосферы - кору и зону выветривания, толщи осадочных пород до границ распространения жизни.

Живое вещество распределено в биосфере неравномерно; места наибольшей концентрации живых организмов и разнообразия форм - почвы, донные отложения озер, приливно-отливные зоны морских побережий и мелководного шельфа, верхний эвфотический слой вод морей и океанов. По мере удаления от поверхности Земли плотность жизни и разнообразие видов уменьшаются. Наиболее глубоко от поверхности Земли проникает жизнь в Мировом океане: обитаемы вся толща воды и доступная для наблюдений часть донных осадков; на дне глубочайших океанических впадин, таких как Марианский (11 022 м) и Филиппинский желоба (свыше 10 000 м) и других, существует своеобразная абиссальная фауна, разнообразная микрофлора.

На суше живые клетки микроорганизмов обнаружены в толще литосферы на меньшей глубине: при бурении скважин в подземных водах на 1500-2000 м, в нефтеносных водах - на 4500 м. Проникновению организмов в глубь литосферы препятствуют температуры, превышающие 100° С.

Верхние пределы биосферы, по-видимому, совпадают с границей тропосферы (11 000 м над ур. моря); не исключено попадание микроорганизмов в стратосферу. Однако активная жизнедеятельность на больших абсолютных высотах ограничивается не столько низкими температурами, сколько недостатком жидкой воды и углекислоты: парциальное давление СO 2 на высоте 5600-5700 м в 2 раза меньше, чем на уровне моря. Живые, активно развивающиеся водоросли, грибы, бактерии обнаружены в горах на высотах 6200-6500 м, где они распространены не только на скалах, но и на поверхности и в толще фирна и льда.

Следовательно, микроорганизмы расселены в пределах всей биосферы и являются индикаторами ее нижней и верхней границы: они развиваются в широком диапазоне экологических условий, образуют колоссальные сгущения в местах общей концентрации жизни и заполняют экологические ниши в экстремальных условиях, где жизнь высших организмов невозможна.

Столь широкому их распространению способствуют, во-первых, малая масса и размеры бактерий - 1-2 мкм, клеток дрожжей, спор грибов - около 10 мкм. С водой они проникают в тончайшие волосные трещины пород, достигая глубоких водоносных горизонтов, поднимаются к верхним границам тропосферы, увлекаемые воздушными потоками, залетают в стратосферу, совершают глобальные перемещения и заселяют ледники Гренландии и Антарктиды.

Микроорганизмы очень выносливы, переносят сильное иссушение и не теряют при этом жизнеспособности, в живых клетках содержится 80-85% воды. Высохшие споры плесневых грибов, некоторых бацилл, содержащие лишь 40% воды, сохраняют способность к прорастанию 10-20 лет. Неспороносные, микроорганизмы выдерживают высушивание в течение нескольких месяцев.

В высохшем состоянии микроорганизмы устойчивы к воздействию прямых солнечных лучей и высоких температур, поэтому обильная микрофлора обитает на поверхности почв, скал и обломков пород в пустынях.

Подавляющее большинство микроорганизмов хорошо переносит низкие температуры. Эксперименты, проведенные в лабораториях (Беккерель, 1925), показали, что споры бактерий и грибов, находившиеся в течение полугода и более при температуре жидкого воздуха (-190°), не погибали и сохраняли способность к прорастанию. При откачке воздуха, в разреженной атмосфере они выдерживали и более низкие температуры. Свидетельство выносливости микроорганизмов к низким температурам - их широкая распространенность в нивальном поясе гор, полярных областях, вечномерзлых горизонтах почв и грунтов. Многие микроорганизмы способны переходить при неблагоприятных условиях в состояние анабиоза. При малейшем улучшении внешней среды они возвращаются к жизни: начинается усвоение воды, углекислоты, быстрое размножение, например, деление микрококков происходит каждые полчаса. В местах концентрации жизни миллионы и миллиарды клеток различных микроорганизмов населяют каждый кубический сантиметр природных вод, почв и донных осадков.

Повсеместное распространение микроорганизмов, большая скорость жизненных циклов наряду с разнообразием выполняемых функций обусловливают их исключительную роль в геохимических процессах биосферы. Изучение геохимических функций живого вещества в биосфере - это основная задача биогеохимии, основал которую В. И. Вернадский; ее интенсивное развитие началось с середины XX в., когда в связи с всевозрастающей техногенной деятельностью человечества встали проблемы охраны окружающей среды.

Все геохимические функции микроорганизмов в биосфере можно с определенной долей условности разделить на следующие виды:

1) ассимиляционные - по отношению к газам атмосферы и создание органического вещества;

2) деструкционные - по отношению к органическому веществу;

3) газовые - регулирование газового режима почв, водоемов, приземной атмосферы;

4) окислительно-восстановительные - по отношению к макро — и микроэлементам с переменной валентностью;

5) деструкционные - по отношению к горным породам и минералам;

6) аккумулятивные функции и создание биогенных минералов и горных пород.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Биосфера – это область распространения жизни на Земле как целостной, активной и динамичной системы, которая охватывает нижнюю часть атмосферы, практически всю гидросферу и верхнюю часть литосферы.

Целостное учение о биосфере и протекающих в ней процессах было создано и развито в 30-х годах акад. В.И. Вернадским. Совокупность живых организмов – «живое вещество».

Биосфера возникла с появлением жизни на Земле.

3,6 – 3,8 млрд. лет – жизненный возраст биосферы.

10 16 кг – масса биосферы

Эволюция биосферы.

появление простейших клеток-прокариотов;

появление значительно более высокоорганизованных клеток-эукариотов;

объединение клеток-эукариотов с образованием многоклеточных организмов, функциональная дифференциация клеток в организмах;

появление организмов с твердыми скелетами, открывшее путь к образованию высших животных;

возникновение у высших животных развитой нервной системы и формирование мозга как центра сбора, переработки, хранения информации и управления на ее основе функционированием и поведением организмов;

формирование разума как высшей формы деятельности мозга;

образование социальной общности людей – носителей разума.

Вершиной направленного развития биосферы стало появление в ней человека, открывшего эру становления на Земле разума. В истории Земли был период чисто геологической эволюции, его сменил период геолого-биологической эволюции, а с появлением человека открылся период психогенеза – духовной эволюции.

Роль организмов в эволюции биосферы.

1. криптозой

архей (3,6 – 2,6 млрд лет тому назад)

господство одноклеточных(сине-зеленые водоросли, прокариоты)

протерозой (2,6млрд. – 600 млн. л. т. н.)

низшие формы растений, колонии организмов, эукариоты

возникновение фотосинтеза привело к накоплению в воде и атмосфере свободного кислорода, благодаря чему возник и начал развиваться процесс аэробного дыхания – одна из основ прогрессивной эволюции живых организмов Земли.

Появление первых живых систем

Возникновение механизма репликации

Формирование клетки(мембрана)

Поверхностный слой водоемов – зарождение жизни (планктон, бактерии)

2. фанерозой

2.1 палеозой

2.1.1 кембрий(680 млн. л. т. н.)

2.1.2 ордовик(490 млн. л. т. н.)

процветание всех отделов водорослей и морских беспозвоночных. Наиболее распространены трилобиты.

2.1.3 силур(440 млн. л. т. н.)

выход растений на сушу – появление псилофитов. Появление первых наземных беспозвоночных; в морях – первых позвоночных (бесчелюстных щитковых).

2.1.4 девон(400 млн. л. т. н.)

папортникообразные, первые земноводные – стегоцефалы.

2.1.5 карбон(350 млн. л. т. н.)

расцвет земноводных, появление первых пресмыкающихся, первые крылатые насекомые, пауки, скорпионы.

2.1.6 пермь(280 – 230 млн. л. т. н.)

2.2 мезозой

2.2.1 триас(230 млн. л. т. н.)

2.2.2 юрский(190 млн. л. т. н.)

2.2.3 меловой(65-70 млн. л. т. н.)

распространение покрытосеменных растений, широкое распространение насекомых; постепенное вымирание рептилий(динозавров)

2.3 кайнозой

2.3.1 палеогеновый(60 млн. л. т. н.)

появление парапитеков и дриопитеков

2.3.2 неогеновый(25 млн. л. т. н.)

современные семейства млекопитающих, господство покрытосеменных растений

2.3.3 антропогеновый(2,5 млн. л. т. н.)

появление и развитие человека

Известковые скелеты беспозвоночных образовали осадочные породы(мел, известняк). Отмирание сине-зеленых и красных водорослей способствовало отложению кальция. Некоторые виды водорослей и губок обусловили накопление кремнезема. Каменный уголь образовался из растительных остатков, нефть – из планктона древних морей и других водоемов.

В процессе эволюции живые организмы обособлялись от непосредственной зависимости от среды. Первые организмы(бактерии, водоросли были как бы погружены в питательную среду). Постепенно появились многоклеточные организмы, менее зависимые от изменения внешней среды и имеющие свою внутреннюю среду. Эти многоклеточные организмы обладают системами органов, регулирующими жизненные процессы. Через нервную систему осуществляется связь организма с внешней средой.

Биоценоз. Деревья и травы, образующие лес, и обитающие в нем насекомые, а также разнообразные грибы, бактерии и водоросли, живущие в почве, - все объединены между собой круговоротом веществ и энергии, который осуществляется через пищевые и другие связи. Растительное сообщество вместе с обитателями образуют биоценоз. Биоценозы имеют определенный видовой состав и биомассу – общее количество живого органического вещества, выраженное в единицах массы. Биоценозы существуют в неразрывной связи с абиотической средой.

Популяция. Естественная совокупность свободно скрещивающихся особей одного вида, которые длительно существуют на относительно обособленной территории, называют популяцией. Популяции имеют сложную структуру по полу и возрасту, различны по занимаемой площади и числу особей. Численность популяции может резко колебаться по сезонам и годам. Популяция, хотя и обладает потенциальной возможностью неограниченного увеличения численности, обычно насчитывает столько особей, сколько их может прокормиться на занимаемой территории. Например: годы, урожайные для хвойных, отличаются высокой численностью кедровок, белок и соболей, питающихся их семенами.

Главный фактор, определяющий единство популяции и ее обособленность от других, - свободное скрещивание особей. Отсюда большое сходство особей внутри одной популяции по сравнению с особями других популяций. Обособленность популяций поддерживается географической (горы, реки, пустыни) и биологической (разные сроки цветения или спаривания, половая несовместимость и др.) изоляцией. В популяции происходят все первичные эволюционные процессы, это основная единица эволюции.

Биосфера – единый живой организм.

Многообразие видов живых организмов. Коэволюция – взаимное развитие видов.

Постепенные изменения сменялись резким исчезновением одних видов и расцветом других.

Общая тенденция: из основного «древа жизни» развитие многообразия организмов.

Главный элемент – популяция (изолирование за счет физико-биологических условий)

взаимное приспособление (симбиоз)

живые организмы:

Продуценты (растения, грибы) «производители»

Консументы (животные, человек, некоторые виды растений) «потребители»

Редуценты (бактерии, грибы) разлагают органическое вещество до неорганического

круговороты органического вещества.

6. В биосфере постоянно идут круговороты веществ. (хим. и др.) ; обмен энергией.

На Земле ежегодно производится и разрушается 10 12 т живого вещества. Такой интенсивный кругооборот веществ, создавший биосферу и определяющий ее устойчивость и целостность, связан с жизнедеятельностью всей биомассы планеты. В отличие от мертвой материи живое вещество способно к аккумулированию энергии, к размножению и обладает огромной скоростью реакций.

Последние 600 млн. лет, с начала палеозойской эры, характер основных круговоротов существенно не менялся. Шло накопление кислорода, связывание азота, осаждение кальция, накопление фосфора и т. д. Менялись лишь скорости этих процессов. Стабильное состояние биосферы в первую очередь обусловлено деятельностью самого живого вещества. Жизнь на Земле невозможна без круговорота веществ.

При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru